Ku-Hsien Chang, Ying-Chih Lin,* Yi-Hong Liu and Yu Wang

Department of Chemistry, National Taiwan University Taipei, Taiwan 106, Republic of China

Received 29th May 2001, Accepted 24th August 2001 First published as an Advance Article on the web 11th October 2001

Treatment of the phenyl substituted cyclopropenyl complex $[Ru] - (E-(Ph)CHPh (1a, [Ru] = (\eta^5 - C_5H_5)(PPh_3)_2Ru)$ with Me₃SiN₃ in THF in the presence of NH₄PF₆ at room temperature afforded the nitrile complex {[Ru]NCCH-(Ph)CH₂Ph}PF₆ 5a. Similar reaction of the cyano substituted cyclopropenyl complex [Ru]—C=C(Ph)CHCN 1b with Me₃SiN₃ gave the tetrazolate complex [Ru]-N₄CCH(Ph)CH₂CN 6. Proposals are made concerning the mechanism for the synthesis of these compounds. The reaction of [Ru]-C=C(Ph)CHCH=CH2 1c with Me3SiN3 takes a different route and gives the nitrile complex [Ru]-CN 7 and the five-membered-ring organic compound PhC=CN3HCH2CH3 11. The structures of complexes 5a and 6 have been determined by single crystal X-ray diffraction analysis,

Introduction

Cyclopropene is a highly strained cycloalkene and its estimated strain energy is >50 kcal mol⁻¹. This molecule has played a crucial role in the development of important concepts such as aromaticity and chemical reactivities.2 Many recent studies have focused on the use of various cyclopropenes in organic synthesis.³ However, little is known about synthetic applications of metal-cyclopropenyl systems. To date, deprotonation of a number of vinylidene ruthenium complexes [Ru]=C=C(Ph)- CH_2R^+ ([Ru] = $(\eta^5-C_5H_5)(PPh_3)_2Ru$; R = Ph, CN or CH=CH₂) is known to produce cyclopropenyl derivatives.⁴ Further reaction with an electrophile readily opens the three-membered cyclopropenyl ring of these Ru complexes to restore the vinylidene moiety. In the ruthenium system, cyclopropenyl and vinylidene complexes display distinctive reactivities. In order to explore potential applications of such a new type of complex, we carried out reactions of cyclopropenyl complexes with various organic substrates. Reactions of Me₃SiN₃ with several ruthenium cyclopropenyl complexes containing various substituents at the cyclopropenyl ring modestly yield nitrogen containing heterocyclic products. Following a preliminary account ⁵ of this work, we now disclose the results of detailed synthetic and structural investigations on the reactions of Me₃SiN₃ with a Ru-cyclopropenyl complex.

Results and discussion

Reaction of 1a with Me₃SiN₃

Treatment of the cyclopropenyl complex [Ru]—C=C(Ph)CHPh 1a with a five-fold excess of Me₃SiN₃ in THF at room temperature afforded [Ru]-N₃ 2⁶ and PhCH₂CHPhCN 3⁷ in about equal amount as two major end products in high yield (Scheme 1). A series of successive color changes were noted during the course of the reaction: the light yellow solution of 1a first turned deep red upon addition of Me₃SiN₃ at room temperature, and was subsequently seen to turn light orange after 3 h and orange after 7 h. Complexes 2 and 3 were isolated as the final product, whereas the red intermediates were quenched at -10 °C in a separate experiment, giving the vinylidene complex $\{[Ru]=C=C(Ph)CH_2Ph\}N_3$ 4a as the major product, along with small amounts of the N-coordinated nitrile complex {[Ru]NCCH(Ph)CH₂Ph}N₃. The reaction carried out

at room temperature for 2 h then at 0 °C for 1 h in the presence of NH₄PF₆ gave a light orange solution from which 5a with counter anion PF₆⁻ could be isolated in high yield. Finally longer times gave 2 and 3. Complex 4a is unstable in solution at room temperature and undergoes a further reaction with azide to give 5a with azide counter anion, which is also unstable in solution and gives 2 and 3. Both 4a and 5a, can be isolated in stable form by replacing the counter anion N_3^- by PF_6^- .

Scheme 1

The ¹H NMR spectrum of **4a** displays a singlet resonance at δ 3.50 assignable to the CH₂ group and the ³¹P NMR spectrum of 4a displays a singlet resonance at δ 42.5. The ³¹P NMR spectrum of 5a displays two doublet resonances at δ 42.2 and 41.5 with $J_{P-P} = 35.2$ Hz indicating the presence of a stereogenic center in the N-coordinated nitrile ligand. In the ¹H NMR spectrum, the same pattern, *i.e.* a two-doublet-resonance at δ 3.16, $(J_{H-H} = 13.9, 8.9 \text{ Hz})$ and 2.86 $(J_{H-H} = 13.9, 7.8 \text{ Hz})$ assigned to the diastereotopic CH₂ group is consistent with the ³¹P NMR data. The parent peak in the FAB mass spectrum of 5a clearly

Table 1 Selected bond distances (Å) and angles (°) for 5a

Ru-P1	2.3721(13)	Ru–P2	2.3552(14)
Ru-N	2.038(4)	N-C1	1.129(7)
C1-C2	1.495(9)	C2–C3	1.386(11)
C2-C15	1.540(11)	C3-C9	1.511(11)
C4-C8	1.378(10)		, í
	` '		
N-Ru-P1	89.01(12)	N-Ru-P2	91.11(12)
P2-Ru-P1	99.72(5)	C1-N-Ru	175.3(5)
N-C1-C2	176.6(8)	C3-C2-C1	116.5(8)
C3-C2-C15	118.6(7)	C1-C2-C15	111.3(6)
C2-C3-C9	121.2(7)		

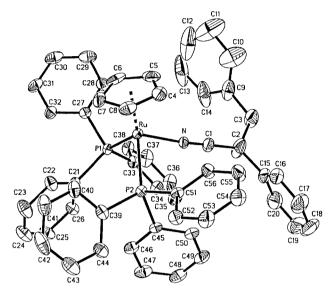


Fig. 1 An ORTEP drawing of 5a with thermal ellipsoids shown at the 30% probability level.

indicates that **5a** results from addition of a nitrogen atom to **4a**. The structure of **5a** has been determined by a single crystal X-ray diffraction analysis. An ORTEP⁸ drawing is shown in Fig. 1. Selected bond distances and angles are listed in Table 1. The nitrile ligand is coordinated to the Ru center *via* the nitrogen atom. The Ru–N–C1 and N–C1–C2 bond angles of 175.3(5) and 176.6(8)°, respectively, are both close to 180°. The Ru–N and N–C1 distances of 2.038(4) and 1.129(7) Å, respectively, are typical.

Reaction of 1b with Me₃SiN₃

Treatment of [Ru]-C=C(Ph)CHCN 1b with Me₃SiN₃ at room temperature for 3 h leads to the addition of four nitrogen atoms to 1b and readily affords the yellow tetrazolate complex [Ru]-N₄CCH(Ph)CH₂CN 6 in high yield (Scheme 1). The yield of minor product [Ru]-CN 7 was ca. 5% (observed by ¹H NMR spectroscopy before recrystallization). Traces of water in THF are believed to act as the source of protons that are incorporated into the product through hydrolysis of the Me₃Si substituent derived from addition of Me₃SiN₃ to the three-membered ring. From the reaction mixture Me₃SiOH was distilled off with THF and was identified by mass spectrometry. In both reactions of 1a and 1b with Me₃SiN₃, addition of D₂O to THF led to incorporation of two deuterium atoms at two vicinal carbon atoms of both 3 and 6. Complex 6 is stable at room temperature, thus in the course of the reaction only a deep red color attributed to a vinylidene intermediate was observed before the solution turned to light yellow. The vinylidene intermediate {[Ru]=C=C(Ph)CH₂CN}N₃ 4b could also be isolated from the reaction carried out at 0 °C after a shorter reaction time. However, no reaction was observed between $\{[Ru]=C=C(Ph)CH_2CN\}PF_6$ and Me_3SiN_3 . This might be due to the covalent character of the Si-N bond in Me₃SiN₃ and

Table 2 Selected bond distances (Å) and angles (°) for 6

Ru-P1 Ru-N1 N1-N4 N3-C1 N5-C10 C2-C3 C9-C10	2.348(3) 2.121(7) 1.383(10) 1.328(12) 1.103(13) 1.541(14) 1.479(14)	Ru-P2 N1-N2 N2-N3 N4-C1 C1-C2 C2-C9	2.346(3) 1.263(11) 1.356(11) 1.339(12) 1.512(13) 1.523(14)
P1–Ru–P2	102.65(9)	P1-Ru-N1	95.15(21)
P2–Ru–N1	90.09(20)	Ru–N1–N2	122.5(6)
Ru-N1-N4	124.3(5)	N2-N1-N4	112.9(7)
N1-N2-N3	107.9(7)	N2-N3-C1	105.5(8)
N1-N4-C1	101.0(7)	N3-C1-N4	112.6(8)
N3-C1-C2	124.8(8)	N4-C1-C2	122.6(8)
C1-C2-C3	110.9(8)	C1-C2-C9	109.2(7)
C3-C2-C9	114.8(8)	C2-C9-C10	114.6(9)
N5-C10-C9	177.1(12)		` '

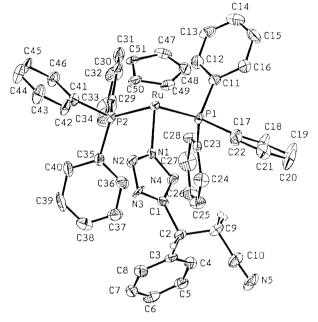


Fig. 2 An ORTEP drawing of 6 with thermal ellipsoids shown at the 30% probability level.

weak nucleophilicity of the vinylidene ligand of the cationic complex to cleave the Si–N bond. The presence of a Me₃Si group in the reaction system assists the ring-opening process. Thus the reaction of 1b with Me₃SiCl in the presence of NaN₃ gave a mixture of 6, 7 and 2 in a 3:1:1 ratio. For 4b with a PF_6^- counter anion, attempts to exchange the counter anion to a N_3^- led to decomposition of the vinylidene complex. To initiate a clean addition reaction at C_α it is therefore essential to have the three-membered cyclopropenyl ring and the presence of a Me₃Si group as a relatively good electrophile is also required for opening of the ring.

In the ¹H NMR spectrum of **6**, a dd resonance at δ 4.45 ($J_{\text{H-H}}$ = 7.4, 7.7 Hz) is assigned to the methyne proton and two resonances displaying doublets of an AB pattern at δ 2.66 ($J_{\text{H-H}}$ = 16.6, 7.4 Hz) and 2.44 ($J_{\text{H-H}}$ = 16.6, 7.7 Hz) are assigned to the diastereotopic methylene group. In the ³¹P NMR spectrum of **6**, two doublet resonances at δ 43.8 and 41.6 with $J_{\text{P-P}}$ = 38.9 Hz are assigned to the two PPh₃ ligands due to the presence of a stereogenic carbon center in the substituent of the tetrazolate ring. The structure of **6** has been determined by a single crystal X-ray diffraction analysis. An ORTEP⁸ drawing is shown in Fig. 2. Selected bond distances and angles are listed in Table 2. The planar five-membered tetrazolate ring is coordinated to the Ru center *via* the N1 atom. The N1–N2 distance of 1.263(11) Å is significantly shorter than the other two N–N distances (1.356(11) and 1.383(10) Å) indicating localization of a double

bond character at N1–N2 with localization of a positive charge at N1. The C1–N3 and C1–N4 distances of 1.328(12) and 1.339(12) Å, respectively, are about the same indicating delocalization of negative charge at the N3–C1–N4 unit.

Possible mechanism for the formation of 5a and 6

The reaction of 1a with Me₃SiN₃ leading to 5a may proceed via the following pathway. An electrophilic addition of a Me₃Si group at the three-membered ring with concomitant opening of the ring followed by hydrolysis of the added Me₃Si group affords 4a containing an azide counter anion. 4 This is followed by nucleophilic addition of an azide anion at C_a of the vinylidene ligand.9 Subsequent electrophilic addition of a second Me₃Si group at the C_β followed by loss of N₂ is accompanied by a metal migration and hydrolysis of the Me₃Si group to give the N-coordinated nitrile complex 5a (Scheme 1). In the reaction of 1b with Me₃SiN₃, the reaction may proceed similarly in the first stage to give an analogue of 5a. Formation of 6 is then rationalized by a [3 + 2] cycloaddition of the C≡N bond with another azide anion followed by metal migration (linkage isomerization). 10 A possible pathway via direct cyclization of the imine intermediate with azide anion to result in formation of 6 could also occur. 10 In a previous study, organic tetrazole compounds were synthesized via routine [3 + 2] cycloaddition reaction of a nitrile group with azide.11 In some systems, cyclization was observed in the case of an imine compound with an azide group.11 Additionally, tetrazole compounds resulted from attack of an azide to an imine compound with an appropriate leaving group following cyclization have also been reported.¹² The fact that 5a would not undergo further nucleophilic addition or cyclization is interpreted in terms of relatively larger steric hindrance of a phenyl group relative to a CN group.

Metal-coordinated azide ligands undergo 1,3-dipolar cycloaddition reactions with carbon-carbon and carbon-heteroatom multiple bonds. The metals involved are most often palladium(II), 13 platinum(II) 14 or cobalt(III) 15 although a whole range of other transition metals ^{16–19} has been used. Formation of tetrazolate ring in 6 should not proceed via this pathway since the reaction of organic nitrile with [Ru]-N₃ does not yield **6**. We also found that the reaction of the acetylide complex [Ru]-C=C-Ph with an excess of Me₃SiN₃ afforded 2 and an organic product identified as PhCH₂CN by elemental analysis and high resolution mass spectrometry. In the presence of NH₄PF₆ the reaction gave {[Ru]NCCH₂Ph}PF₆ 8 in high yield. Thus transformation of an acetylide ligand to a nitrile ligand by Me₃SiN₃ possibly proceeds via the same electrophilic addition of an Me₃Si group yielding vinylidene followed by a nucleophilic addition of an azide anion at C_a. Conversion of a vinylidene precursor to an N-coordinated nitrile by hydrazine, an organometallic Beckmann rearrangement, has been reported in an iron system.20

Reactions of 6 with electrophiles

Protonation of **6** with HCl takes place at the tetrazolate ring and gives {[Ru]–N₄HCCH(Ph)CH₂CN}Cl **9** as the only product (Scheme 1). The ¹H NMR spectrum of **9** displays the characteristic pattern for a CHCH₂ group. In the ³¹P NMR spectrum the two doublet resonances at δ 42.2 and 42.4 is a result of the presence of a diastereotopic center in the coordinated organic ligand indicating that the tetrazolate ligand should be bound to the metal. The protonation might have occurred at one of two nitrogen atoms near the carbon because of localization of the negative charge at these two nitrogen atoms in **6**.

An alkylation reaction of **6** with the alkyl halide CH₃I at 50 °C in CHCl₃ caused cleavage of the M–N bond and gave [Ru]–I and CH₃N₄CCH(Ph)CH₂CN **10** (Scheme 1). Two products were separated by chromatography and the organic product **10**, eluted by MeOH, was identified by NOE data and its high-resolution mass spectrum. For the same reason

described before, we expect that alkylation should take place also at the nitrogen atom next to the ring carbon. The NOE effect (2.64%) between the CH and Me groups is consistent with the proposed structure of 10.

Reaction of 1c with Me₃SiN₃

Treatment of [Ru]–C=C(Ph)CHCH=CH₂ 1c with an excess of Me₃SiN₃ afforded [Ru]–CN 7 and PhCN₃HCCH₂CH₃ 11 (Scheme 2). Compound 11 is identified by elemental analysis

$$[Ru] \longrightarrow Ph$$

$$Me_3SiN_3$$

$$1c$$

$$[Ru] \longrightarrow CN + N$$

$$N$$

$$N$$

$$Me_3Si \longrightarrow N_3$$

$$Me_3Si \longrightarrow N_3$$

$$Me_3Si \longrightarrow N_3$$

$$Ru \longrightarrow Ph$$

$$N_3 \longrightarrow N_3$$

$$Ru \longrightarrow N_3$$

and spectroscopic methods including high-resolution mass spectrometry. Formation of 7 and 11 from 1c is a result of cleavage of the C=C bond of the cyclopropenyl ring, along with an addition of a triazo group and transformation of the vinyl to an ethyl group. Addition of a Me₃Si group to the terminal carbon atom of the vinyl group accompanied with opening of the three-membered ring results in formation of the cationic vinylidene intermediate, A (Scheme 2). We previously reported that the reaction of TCNQ with 1c gives similar electrophilic addition at the terminal carbon of the vinyl group. Subsequent nucleophilic addition of N_3 at C_a followed by hydrolysis gave **B**. Further addition of Me_3SiN_3 at C_δ followed by hydrolysis led to formation of C. Two resonance forms of C are depicted in Scheme 1. The single bond character at C_a-C_B in both forms facilitates its cleavage. This cleavage is accompanied with a [3 + 2] cycloaddition of the C=C bond with an azide anion to give the triazole compounds 11 and 7. The fact that 7 is isolated in this reaction as the only organometallic product suggests that it is not possible to produce the terminal N-coordinated nitrile intermediate. Formation of 7 as a minor product in the reaction of 1b with Me₃SiN₃ could proceed through the same pathway.

Concluding remarks

In conclusion, various substituents at the sp³ carbon of the three-membered ring govern the reactivity of the ruthenium cyclopropenyl complexes toward Me₃SiN₃. Reaction of the ruthenium complex 1a containing a phenyl substituent on the cyclopropenyl ring with Me₃SiN₃ afforded the N-coordinated nitrile complex 5a. The reaction of Me₃SiN₃ with 1b containing a CN group on the cyclopropenyl ring gave the tetrazolate complex 6 which proceeded through the same type of

intermediate as that in the reaction of 1a followed by a further addition of Me₃SiN₃. The reaction of 1c containing a vinyl substituent on the cyclopropenyl ring with Me₃SiN₃ gave the organic product 11, which contains a five-membered triazole ring. Characterization of these products has led to a better understanding of the mechanism of these reactions. The reaction can be explained in terms of combined effects of the nucleophilic sp³ carbon of the cyclopropenyl ring and the electrophilic nature of the Me₃Si group.

Experimental

General procedures

All manipulations were performed under nitrogen using vacuum-line, dry box, and standard Schlenk techniques. CH₃CN and CH₂Cl₂ were distilled from CaH₂ and diethyl ether and THF from Na/ketyl. All other solvents and reagents were of reagent grade and were used without further purification. NMR spectra were recorded on Bruker DMX-500, AM-300 and AC-200 FT-NMR spectrometers at room temperature (unless stated otherwise) and are reported in units of δ with residual protons in the solvent as standard (CDCl₃, δ 7.24; C₆D₆, δ 7.15; (CD₃)₂CO, δ 2.04). FAB mass spectra were recorded on a JEOL SX-102A spectrometer. Complexes [Ru]-C=C(Ph)CHR ($[Ru] = (\eta^5-C_5H_5)(PPh_3)_2Ru$, R = Ph, 1a; R = CN, 1b; $R = CH = CH_2$, 1c)⁴ were prepared following the method reported in the literature. Elemental analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instrument located at the National Taiwan University.

Reaction of 1a with Me₃SiN₃

To a solution of complex 1a (0.21 g, 0.23 mmol) in THF (20 ml) was added Me₃SiN₃ (0.18 mL, 1.34 mmol) and the mixture was stirred at room temperature for 7 h. Then the resulting orange solution was dried in vacuo. The residue was extracted with hexane and the residual solid was further washed with water to give [Ru]N₃ 2 (0.14 g, 73% yield). The hexane extract was concentrated and was then eluted with diethyl ether on a silica gel packed column and the solvent of the band containing the organic compound was removed on a rotary evaporator to give NCCH(Ph)CH₂Ph 3 (0.046 g, 64% yield). Spectroscopic data for 2: ¹H NMR (CDCl₃): δ 7.68–7.09 (m, 30H, Ph); 4.19 (s, 5H, Cp). ³¹P NMR (CDCl₃): δ 41.6. ¹³C NMR (CDCl₃): δ 138.4– 127.5 (Ph); 81.3 (Cp). MS (FAB): m/z 733 (M⁺), 705 (M⁺ – N₂); 691 ($M^+ - N_3$). Anal. Calc. for $C_{41}H_{35}N_3P_2Ru$: C, 67.20; H, 4.81; N, 5.73. Found: C, 67.12; H, 4.77; N, 5.70%. Spectroscopic data for 3: 1 H NMR (CDCl₃): δ 7.43–7.09 (m, 10H, Ph); 3.98 (dd, 1H, CH, J_{H-H} = 8.4, 6.7 Hz); 3.17, 3.11 (dd, 2H, CH₂, J_{H-H} = 8.4, 6.7, 13.7 Hz). High resolution MS: calc. for $C_{15}H_{13}N$: m/z207.1048, found: 207.1050.

Preparation of {[Ru]NCCH(Ph)CH₂Ph}PF₆ 5a

To a solution of complex **1a** (0.45 g, 0.51 mmol) in THF (20 mL), Me_3SiN_3 (0.4 mL, 3.02 mmol) was added. The reaction mixture turned orange in 2 h and starting material disappeared as indicated by the ³¹P NMR spectrum. Then NH_4PF_6 (0.1 g, 0.6 mmol) was added and the solution stirred at 0 °C for 1 h. The mixture was filtered through Celite, and the filtrate concentrated to *ca.* 5 mL at reduced pressure. Addition of hexane afforded a yellow–orange powder, which was filtered and dried *in vacuo* to give **5a** (0.43 g, 80%). Spectroscopic data for **5a**: ¹H NMR (CDCl₃): δ 7.68–6.84 (m, 35H, Ph); 4.40 (dd, 1H, CH, J_{H-H} = 8.9, 7.8 Hz); 4.37 (s, 5H, Cp); 3.16, 2.86 (dd, 2H, CH₂, J_{H-H} = 8.9, 7.8 Hz, J_{H-H} = 13.9 Hz). ³¹P NMR (CDCl₃): δ 135.8–127.1 (Ph), 118.6 (CN); 83.7 (Cp); 40.8 (CH); 39.7 (CH₂). MS (FAB): m/z 897.9 (M⁺ — PF₆), 691 (M⁺ — PF₆, NCCHPhCH₂Ph),

429.1 (M^+ – PF_6 , PPh_3 , $NCCH(Ph)CH_2Ph$). IR (KBr): 2254 cm⁻¹. Anal. Calc. for $C_{56}H_{48}F_6NP_3Ru$: C, 64.49; H, 4.64; N, 1.34. Found: C, 64.52; H, 4.93; N, 1.54%.

Synthesis of [Ru]N₄CCH(Ph)CH₂CN 6

To a solution of complex **1b** (0.51 g, 0.60 mmol) in THF (20 mL), Me₃SiN₃ (0.50 ml, 3.77 mmol) was added. After 3 h the mixture was concentrated to *ca*. 5 mL, and slowly added to 60 mL of a stirring hexane. The yellow precipitate thus formed was filtered off, and washed with hexane. The product was recrystallized from acetone–hexane (1 : 4) and identified as **6** (0.45 g, 85%). Spectroscopic data for **6**: ¹H NMR (C₆D₆): δ 7.59–6.81 (m, 35H, Ph); 4.45 (dd, 1H, CH, J_{H-H} = 7.4, 7.7 Hz); 4.29 (s, 5H, Cp); 2.66, 2.44 (dd, 2H, CH₂, J_{H-H} = 16.6, 7.4, 7.7 Hz). ³¹P NMR (CDCl₃): δ 43.8, 41.6 (dd, J_{P-P} = 38.9 Hz). ¹³C NMR (CDCl₃): δ 164.1 (NCN); 140.2 (C_{ipso} of Ph); 138.3–127.1 (Ph); 118.6 (CN); 83.1 (Cp); 39.9 (CH); 23.5 (CH₂). MS (FAB): m/z 889.2 (M⁺, Ru = 102), 691 (M⁺ – N₄CCH(Ph)CH₂CN), 429.1 (M⁺ – PPh₃; N₄CCH(Ph)CH₂CN). Anal. Calc. for C₅₁H₄₃N₅-P₂Ru: C, 68.91; H, 4.88; N, 7.88. Found: C, 68.84; H, 4.84; N, 7.87%

Synthesis of [Ru]N₄CCD(Ph)CDHCN (6-D)

To a solution of complex **1b** (0.10 g, 0.12 mmol) and D₂O (12.96 μ L, 0.72 mmol) in THF (10 mL) was added Me₃SiN₃ (0.10 mL, 0.75 mmol). After stirring for 4 h, the mixture was concentrated to *ca.* 3 mL, and slowly added to 30 mL of stirring hexane. The yellow precipitate thus formed was filtered off, and washed with hexane. The major product was identified as **6-D** (0.08 g, 80%). Spectroscopic data for **6-D**: ¹H NMR (CDCl₃): δ 7.78–7.02 (m, Ph, 35H), 4.30 (s, 5H, Cp); 2.58, 2.51 (two s, 1H, CH, diastereomers). ³¹P NMR: δ 43.7, 41.4 (J_{P-P} = 37.9 Hz). MS (FAB): mlz 891.2 (M⁺), 691 (M⁺ – N₄CCD(Ph) – CDHCN), 429.1 (M⁺ – PPh₃, N₄CCD(Ph)CDHCN).

Protonation of 6 with HCl

The reaction was carried out in a NMR tube. To a solution of complex **6** (20 mg, 0.022 mmol) in CDCl₃ prepared under N₂, 5 μ L of HCl (1 M in H₂O) was added. The reaction completed immediately and the color changed from yellow to green. The solvent and HCl were removed *in vacuo* over 5 h at 60 °C. The green product was washed with hexane, dried *in vacuo* and identified as {[Ru]–N₄HCCH(Ph)CH₂CN}Cl **9** (19 mg, 90% yield). Spectroscopic data for **9**: ¹H NMR (CDCl₃): δ 7.76–6.85 (m, 5H, Ph); 4.76 (t, 1H, CH, $J_{\rm H-H}$ = 7.5 Hz); 4.34 (s, 5H, Cp); 2.83 (d, 2H, CH₂, $J_{\rm H-H}$ = 7.5 Hz). ³¹P NMR (CDCl₃): δ 42.2, 42.4 (AB, $J_{\rm P-P}$ = 36.2 Hz). MS (FAB): m/z 890.1 (M⁺ – Cl); 691.0 (M⁺ – Cl, N₄HCCH(Ph)CH₂CN).

Reaction of complex 6 with CH₃I

To a solution of complex **6** (22 mg, 0.024 mmol) in CDCl₃ prepared under N₂ in a NMR tube, 10 μ L of CH₃I was added. The reaction was carried out at 50 °C for 10 h, and the color changed from yellow to red. Then the solvent and excess of CH₃I were removed *in vacuo*. The organic product was extracted with diethyl ether, and passed through a silica column. A 1 : 1 diethyl ether–hexane solution eluted the organometallic compound, [Ru]–I and MeOH eluted the organic product identified as CH₃N₄CCH(Ph)CH₂CN **10**. Spectroscopic data for **10**: ¹H NMR (CDCl₃): δ 7.76–6.85 (m, 5H, Ph); 4.42 (dd, $J_{\text{H-H}}$ = 8.7, 6.4 Hz, 1H, CH); 3.72 (s, 3H, CH₃); 3.44, 3.24 (dd, $J_{\text{H-H}}$ = 16.6, 8.7, 6.4 Hz, 2H, CH₂). High resolution MS: calc. for C₁₁H₁₁N₅: *m/z* 213.1014, found: 213.1009.

Reaction of [Ru]-C=CPh with Me₃SiN₃

To a solution of complex [Ru]–C≡CPh (0.11 g, 0.14 mmol) in THF (20 ml) was added Me₃SiN₃ (0.10 mL, 0.75 mmol). After

	5a	6 •(CH ₃) ₂ CO ^a	
Formula	C ₅₆ H ₄₈ F ₆ NP ₃ Ru	$C_{51}H_{43}N_5P_2Ru\cdot(CH_3)_2CO$	
M	1042.93	947.02	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_1/n$	$P2_1/n$	
a/Å	11.0640(1)	13.251(4)	
b/Å	25.2988(4)	17.142(5)	
c/Å	18.4569(1)	19.855(7)	
βſ°	95.915(1)	93.18(3)	
V/Å	5138.7(1)	4503.2(25)	
Z	4	4	
T/K	296	298	
μ/mm^{-1}	0.457	0.442	
Unique reflections collected	$9045 (R_{int} = 0.0737)$	5879	
Observed data $[I > 2\sigma(I)]$	8610	3393	
Data/parameters	8610/604	3393/549	
Final R1, wR2 indices	0.0643, 0.1728	$0.056, 0.056 (R_f; R_w)^b$	
$[I > 2\sigma(I)]$	•		

^a Crystals grown from an acetone–hexane mixture are found to incorporate an acetone molecule. ${}^bR_{\rm f} = \Sigma(F_{\rm o} - F_{\rm c})/\Sigma(F_{\rm o}); \ R_{\rm w} = [\Sigma(w(F_{\rm o} - F_{\rm c})^2)/\Sigma(W_{\rm o})]^{1/2}.$

24 h, the resulting red solution was dried *in vacuo*. The residue, which was a mixture of [Ru]–N₃ **2** and an organic product, was extracted with hexane and eluted through a silica gel packed column with diethyl ether to obtain pure PhCH₂CN (14.28 mg, 86%) identified by comparing the spectroscopic data with that of an authentic sample. Complex **2** was identified from the NMR spectrum of the mixture.

Synthesis of {[Ru]NCCH₂Ph}PF₆

The complex [Ru]–C≡CPh (0.34 g, 0.42 mmol) was dissolved in THF (15 mL), and Me₃SiN₃ (0.24 mL, 1.81 mmol) added. After stirring for 8 h, ³¹P NMR spectroscopy indicated completion of the reaction after which NH₄PF₆ (0.10 g, 0.6 mmol) was added. The solution was stirred at 0 °C for 3 h, the mixture filtered through Celite, and the filtrate concentrated to *ca.* 5 mL. Addition of hexane to the filtrate afforded a pale yellow powder which was isolated after filtration and washing with hexane and identified as {[Ru]N≡CCH₂Ph}PF₆ 8 (0.34 g, 85%). Spectroscopic data for 8: ¹H NMR (CDCl₃): δ 7.73–6.78 (m, 35H, Ph); 4.46 (s, 5H, Cp); 3.97 (s, 2H, CH₂). ¹³P NMR (CDCl₃): δ 42.18. IR (acetone): 2268 cm⁻¹. MS(FAB): *mlz* 808.1 (M⁺ − PF₆), 691.0 (M⁺ − PF₆, NCCH₂Ph).

Reaction of 1c with Me₃SiN₃

To a solution of complex 1c (0.40 g, 0.48 mmol) in THF (20 mL) was added Me₃SiN₃ (0.40 mL, 3.02 mmol). The solution was stirred for 3 h, then the solution concentrated to ca. 5 mL, and slowly added to 60 mL of stirring hexane. The yellow precipitate thus formed was filtered off, and washed with hexane. The product was recrystallized from CH₂Cl₂-hexane (1:5) and identified as [Ru]-CN 7 (0.31 g, 90%). Spectroscopic data for 7: ¹H NMR (CDCl₃): δ 7.69–6.95 (m, 30H, Ph); 4.35 (s, 5H, Cp). ³¹P NMR (CDCl₃): δ 50.3. ¹³C NMR (CDCl₃): δ 138.2–127.3 (Ph); 85 (Cp). MS (FAB): m/z 717.2 (M⁺), 691.1 (M⁺ – CN), 429.1 (M⁺ – CN, PPh₃). The organic product was collected by extraction with hexane. The pure organic fragment was obtained by elution with diethyl ether on a silica gel packed column and the solvent removed on a rotary evaporator. The organic product was identified as PhC=C(C2H5)N2NH 11 (81%). Spectroscopic data of 11: 1 H NMR (CDCl₃): δ 7.31–7.19 (m, 5H, Ph); 2.89 (q, 2H, CH₂, J_{H-H} = 7.6 Hz); 1.32 (t, 3H, CH₃, $J_{\text{H-H}} = 7.6 \text{ Hz}$). High resolution MS: calc. for $C_{10}H_{11}N_3$: 173.0953, found: 173.0952.

X-Ray analysis of 6 and 5a

A single crystal of **6** of dimensions $0.10 \times 0.25 \times 0.45$ mm was

mounted on an Enraf-Nonius CAD4 diffractometer. Initial lattice parameters were determined from 25 reflections with $10.0 < 2\theta < 25^{\circ}$. Data were collected using the $\theta/2\theta$ scan method. The raw intensity data were converted to structure factor amplitudes and their e.s.d.s by correction for scan speed, background and Lorentz, polarization effects. An empirical correction for absorption was applied to the data set. Computations were carried out using the NRCC structure determination package.21 Merging of equivalent and duplicate reflections gave a total of 5879 unique measured data from which 3393 were considered observed $(I > 2.0\sigma(I))$. The structure was first solved by using the heavy atom method (Patterson synthesis) then refined via least-squares and difference Fourier techniques. The analytical forms of the scattering factor tables for the neutral atoms were used.²² Hydrogen atoms were included in the structure factor calculation in their expected positions on the basis of idealized bonding geometry but were not refined in the least squares refinement. Final refinement using full-matrix, least-squares converged smoothly to values of $R_{\rm f} = 0.056$ and $R_{\rm w} = 0.056$. A single crystal of 5a $(0.10 \times 0.15 \times 0.20)$ was glued to a glass fiber and mounted on a Bruker SMART CCD automated diffractometer. Details of the crystal data, data collections and structure refinements are summarized in Table 3. The structure was solved by direct method and expanded by Fourier techniques. The final refinements were accomplished by the full-matrix least-squares method with anisotropic thermal parameters for non-hydrogen atoms giving R1 = 0.0643 and wR2 = 0.1728. Other relevant crystal data for both crystals are also given in Table 3.

CCDC reference numbers 169474 and 169475.

See http://www.rsc.org/suppdata/dt/b1/b104635g/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We are grateful for support of this work by the National Science Council, Taiwan, Republic of China.

References

- J. F. Libeman and A. Greenberg, Strained Organic Molecules, Wiley, New York, 1978, p. 91; special issue on strained organic compounds, Chem. Rev., 1989, 89.
- 2 B. Halton and M. G. Banwell, in *The Chemistry of the Cyclopropyl Group. Part 2*, eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1987, ch. 21, p. 1223.

- 3 Y-T. Jeong, J.-H. Jung and S.-K. Choi, J. Chem. Soc., Perkin Trans. 1, 1997, 823; A. Chiang, A. S. Grant, A. J. Kresage and S. W. Paime, J. Am. Chem. Soc., 1996, 118, 4366.
- 4 P. C. Ting, Y. C. Lin, G. H. Lee, M. C. Cheng and Y. Wang, J. Am. Chem. Soc., 1996, 118, 6433.
- 5 K. H. Chang and Y. C. Lin, Chem. Commun., 1998, 1441.
- 6 M. M. T. Khan, M. M. Bhadbhade, M. R. H. Siddiqui and K. Venkatasubramanian, Acta Crystallogr., Sect. C, 1994, 50, 502.
- 7 F. D. Lewis, B. E. Zebrowski and P. E. Correa, J. Am. Chem. Soc., 1984, 106, 187.
- 8 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 9 H. Werner, J. Wolf, G. Muller and G. Kruger, Angew. Chem., Int. Ed. Engl., 1984, 23, 431; A. Davison and J. P. Selegue, J. Am. Chem. Soc., 1980, 102, 2455; A. G. M. Barrett and N. E. Carpenter, Organometallics, 1987, 6, 2249.
- 10 W. R. Ellis, Jr. and W. L. Purcell, Inorg. Chem., 1982, 21, 834.
- 11 G. L'Abbè, Chem. Rev., 1969, 69, 345; R. N. Butler, Comprehensive Heterocyclic Chemistry, vol. 5, part 4A, eds. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, p. 791.
- 12 R. N. Bulter, Adv. Heterocycl. Chem., 1977, 21, 323.
- 13 W. P. Fehlhammer and W. Beck, Z. Naturforsch., Teil B, 1983, 38,

- 546; J. Geisenberger, J. Erbe, J. Heidrich, U. Nagel and W. Beck, Z. Naturforsch., Teil B, 1987, 42, 55.
- 14 W. Beck and K. Schorpp, Chem. Ber., 1975, 108, 3317.
- 15 B. T. Hsieh, J. H. Nelson, E. B. Milosavljevic, W. Beck and T. Kemmerich, *Inorg. Chim. Acta*, 1987, 133, 267; T. Kemmerich, J. H. Nelson, N. E. Takach, H. Bohme, B. Jablonski and W. Beck, J. 1992, 21, 1997. Inorg. Chem., 1982, 21, 1226.
- 16 S. J. Blunden, M. F. Mahon, K. C. Molloy and P. C. Waterfield, J. Chem. Soc., Dalton Trans., 1994, 2135.
- 17 R. Guilard, I. Perrot, A. Tabard, P. Richard and C. Lecomte, Inorg. Chem., 1991, 30, 19; R. Guilard, I. Perrot, A. Tabard, P. Richard and C. Lecomte, Inorg. Chem., 1991, 30, 27.
- 18 J. Erbe and W. Beck, *Chem. Ber.*, 1983, **116**, 3867.
- 19 K. Nomiya, R. Noguchi and M. Oda, Inorg. Chim. Acta, 2000, 298,
- 20 A. G. M. Barrett, N. E. Carpenter and M. Sabat, J. Organomet. Chem., 1988, 352, 8.
- 21 E. J. Gabe, F. L. Lee and Y. Lepage, in Crystallograpgic Computing, eds. G. M. Sheldrick and R. Goddard, Clarendon Press, Oxford, England, 1985, p. 167.
- 22 International Tables for X-ray Crystallography, Reidel Publishing Co., Dordrecht, 1974, vol. IV.